Slovenija

S pomočjo umetne inteligence računalniki razumejo in sestavljajo besedila v slovenščini

Ljubljana, 08. 09. 2019 07.00 |

PREDVIDEN ČAS BRANJA: 10 min
Avtor
Daniel Fazlić
Komentarji
37

Napredki v razvoju programov in programiranja so v zadnjih desetih letih ustvarili novo vejo - globoko učenje. Gre za vrsto umetne inteligence, kjer računalnik oziroma program sam ustvarja razumljiva besedila, sam najde razlike na obrazih in bo lahko razumel posebnosti slovenskega jezika. S pomočjo novih tehnologij bo avtonomna vožnja avtomobilov v naslednjih letih postala cenovno dostopna realnost.

Joe Dumoulin je strokovnjak za strojno učenje jezikov, umetno inteligenco in računalniške aplikacije za podjetja. Začel je kot programer in delal v razvoju in strojništvu. Kako se je njegovo delo razlikovalo od večine programerjev, najbolje predstavi kar sam:

Joe Dumoulin, strokovnjak za strojno učenje jezikov, umetno inteligenco in računalniške aplikacije za podjetja.
Joe Dumoulin, strokovnjak za strojno učenje jezikov, umetno inteligenco in računalniške aplikacije za podjetja. FOTO: Damjan Žibert

Najlažje vam pojasnim moje delo tako: matematične formule, ki so napisane na papirju, spremenim v programski  jezik, ki deluje. Zelo pomembno je razumeti matematiko, ki stoji za programom, če želite uporabiti strojno in globoko učenje kot metodo izgradnje programskega jezika. Ker sem sam začel v matematiki in fiziki, je bilo lažje razumeti določene procese, ki so se razvijali v programskem okolju.

Recimo, da iščete terorista: letališče v Frankfurtu vsako leto prečka nekaj milijonov ljudi, po 10.000 na dan, a potencialen terorist prečka to letališče samo enkrat ali dvakrat na leto. Zdaj si predstavljajte, da pridem jaz k vam in vam rečem, da imam program, ki je 99,99 % učinkovit pri prepoznavanju ljudi ...

V 90. letih sta se programiranje in družba precej spremenila z rastjo prodaje in uporabe osebnih računalnikov. Programsko okolje, v katerem sem najprej delal, je bilo v Fortranu, kasneje se je bolj začelo usmerjati v C oziroma C++ in potem še Pascal. Nekatere od teh programov še vedno uporabljamo, druge pa smo opustili. Dejstvo je, da sem kariero zgradil tako, da sem znanstvenikom in inženirjem pomagal njihove ideje programsko ustvariti in to vse v C++. Ne pozabite, da programiram že skoraj 35 let (smeh), to je dolgo obdobje, v katerem so se zgodile marsikatere spremembe.

Umetna inteligenca je zelo napredovala v zadnjih desetih letih. Če se spomnim leta 2011, so bili programi strojnega učenja zelo drugačni od programov, ki jih pišemo danes, ravno zaradi rasti globokega učenja in uporabe nevronskih omrežij.

Kako aktivna je potem vloga programerja oziroma človeka pri usmerjanju računalnika?

Naredimo korak nazaj. Globoko učenje je samo del širšega razumevanja strojnega učenja. Torej, globoko učenje je metoda v jeziku strojnega učenja, strojno učenje pa je del v množici umetne inteligence. Gre za enega modernejših pristopov v razvoju umetne inteligence, v programskem okolju, ki je najbolj učinkovit. Teoretično že vemo, da poznamo samo del delovanja te programske sfere, tudi zato veliko upov polagamo v razvoj te smeri. Podobno je v fiziki, kjer znanstveniki teoretično nekaj vedo, da deluje, a še niso uspeli praktično dokazati tega, za to pa potrebujejo čas in veliko dela.

Globoko učenje je najbolj učinkovit pristop za reševanje določenih problemov, kot so razumevanje jezika, govora ali recimo prepoznavanje slik. Če primerjamo starejše načine strojnega učenja in globokega učenja, lahko vidimo prednosti novih metod. Starejše metode so imele težave s tem, da so se programi lahko "učili" do določene mere in prišlo je do "kapice", točke, na kateri dodajanje novih spremenljivk in informacij ni pripomoglo k učenju programa, ta je prišel do "vrha razumevanja."

Mislite računalnike, ki se bodo samo zavedali, računalnike, ki bodo razmišljali? To se v našem življenju ne bo zgodilo. Težko si predstavljate, kakšna programska težava je to, res.

Kako je to možno?

Sistem se nasiči. Spomnite se samo, kako se vi učite. Začnete brati in se učite eno uro in nove informacije zelo dobro absorbirate, po treh urah že veliko manj, po štirih urah potrebujete kavo, po petih urah pa bi radi dremali. No, večina programov s strojnim učenjem deluje precej podobno, le da ima nasičenost s podatki in tudi če bi jim radi dodali več podatkov, jih bodo sprejeli, ampak se ne bodo ničesar "naučili." Predstavljajte si drevo, veje predstavljajo dodatne spremenljivke, ki jih program mora prepoznati. Dodajate nove veje, ki se slepo končajo, in program vseh teh slepih vej enostavno več ne zmore "razumeti", saj ima vsaka nova informacija manj vpliva na iskanje rešitve, tako kot ima ena veja zanemarljiv vpliv na celotno drevo.

V nekaterih metodah, če imate dovolj znanja o podatkih, ki jih sistem uporablja, lahko programer dopolni razumevanje podatkov in program usmeri, kaj mora iskati in kaj ni pomembno. S tem se lahko izognete določenih slepih vej, program se bo "učil boljše".

Zadnjih 15 let se večino časa ukvarja s strojnim učenjem in obdelavo naravnega jezika ter upravlja raziskovalno skupino pri Verintu.
Zadnjih 15 let se večino časa ukvarja s strojnim učenjem in obdelavo naravnega jezika ter upravlja raziskovalno skupino pri Verintu. FOTO: Damjan Žibert

Pri globokem učenju pa je drugače, saj več kot boste v sistem vnesli podatkov, bolje se bo učil in razumel. Najboljši primer za to so prevodi in prevajanje. Če imate ogromno parov prevodov, recimo med angleščino in slovenščino, bo program to bolje znal prevesti. V starem načinu ste lahko dodajali na tisoče novih parov prevodov, a se program po določeni točki ni naučil nič novega, prevodi so bili nenavadni. V globokem učenju pa računalnik išče povezave, ponavljanja, "sence", verjetnosti med posameznimi besedami in prevodi, zato je pomembno, da mu damo čim več prevodov, kajti z vsakim parom bo bolje razumel sintakso jezika, kar pa prej ni bilo mogoče.

Zato so prevodi na Google prevajalniku vse boljši?

Točno tako. Lahko je prevesti besedo A, težje pa je prevesti stavek B iz angleščine v slovenščino, saj sta stavek in poved veliko več kot sestavljene besede. Vsaj jezik ima posebnosti, tone in tudi različna razumevanja, tudi dele, ki se sploh ne prevajajo (predvsem tehnični jezik). Stare metode strojnega učenja tega niso znale dobro razumeti, zato niso bile uspešne, globoko učenje pa se zna prilagoditi na vse te posebnosti.  

Pomembno je tudi, da programer razume, kako se ti programi "učijo" in da je pravzaprav zelo podobno človeškemu učenju. Študent se lahko uči tako, da prebere odstavek ali stran in potem po spominu napiše povzetek tega. To je zelo učinkovito in si zelo dobro zapomnimo vsebino, tekst pa seveda ni popolnoma enak – je dober povzetek. V globokem učenju obstaja trik, ki ga rad učim ljudi, in sicer ravno na tem primeru, kjer študentom pomagam narediti nevronske mreže tako, da program sam naredi takšen povzetek. Njihovo razumevanje, kako so sami prišli do lastnega povzetka, jim pomaga pri pisanju programa, da bi čim bolj podobno naredil računalnik sam in to je pomembno da razumete vsi – program je tako dober, kot je programer, ki je razumel, kaj bi radi z njim naredili.

Da nadaljujem. Ko boste imeli samo en odstavek, ta programski povzetek nima veliko smisla. Dodate nove odstavke, strani, knjige in ta povzetek bo vse boljši. Jaz bi mu recimo dal nalogo, da prebere vsa dela Friedricha Nietzscheja in potem sestavi stavke. Zanimivo je gledati, kako se program uči, in sicer tako, da gleda položaj črke v razmerju z drugimi črkami. Ne uči se stavkov, saj ne razume, kaj stavki pomenijo, ampak abecedo in vrstni red črk v besedi in program naredi neke vrste svoj jezik, ki je pravzaprav neverjeten.

Katere aplikacije, ki jih že uporabljamo/imamo, bi globoko učenje lahko uporabljale tudi v Sloveniji?

Prevodi jezikov so ena od njih, globoko učenje je trenutno zelo pomembno pri prevajanju. Poleg tega so tudi aplikacije v modernih, sodobnih avtomobilih, npr. pri varnosti, čeprav ne vem, če te uporabljate v Sloveniji, zagotovo pa drži za ZDA, kjer bo večji del vožnje po avtocestah upravljal sam avtomobil, ki bo vedel, kaj storiti. Tehnologija je izjemno nova – ne govorim o neke vrste avtonomnih avtomobilih, a če pomislite, da se npr. vozite po avtocesti, je vožnja zelo običajna. Občasno se morate ustaviti ali upočasniti, a na splošno je vožnja zelo mirna, nima toliko spremenljivk.  

Globoko učenje je metoda v jeziku strojnega učenja, strojno učenje pa je del v množici umetne inteligence.

Poleg avtomobilov tudi v telekomunikaciji. Veliko večino sistemov, ki povezujejo posamezne uporabnike, bodisi digitalno bodisi preko telefonov vodijo programi, ki so bili ustvarjeni z umetno inteligenco. V tem sistemu se že leta uvajajo različni programi, ki omogočajo vse hitrejše povezovanje in optimizirano delovanje sistema, zato danes praktično ni več klikov, šumov in drugih neprijetnih stvari, ki so se dogajale v preteklosti. Če želite na globoko učenje gledati v praktičnem smislu, gre v resnici za evolucijo sistemov, da bi zagotovili bolj učinkovita orodja. Ko dobiš več podatkov, se več naučiš, stare sisteme je bilo vedno treba usmerjati, popravljati in dopolnjevati. Pri globokem učenju je zelo zanimivo, da ko se enkrat odločiš za množico podatkov, iz katerih program črpa, ni treba narediti veliko popravkov in dopolnjevati programa, da bo lahko delal učinkovito, ni treba ugotoviti, katere so pomembne lastnosti naših podatkov ali recimo posebnosti neke slike. Vi sistemu samo daste na voljo vse piksle slike in se bo s pomočjo pikslov naučil, kaj slika pove.

Pomagal je ustvariti nekatere najzgodnejše in najpogosteje uporabljene komercialne avtomatizirane aplikacije za pogovor in številne zgodnje komercialne prototipe v pogovornem AI prostoru.
Pomagal je ustvariti nekatere najzgodnejše in najpogosteje uporabljene komercialne avtomatizirane aplikacije za pogovor in številne zgodnje komercialne prototipe v pogovornem AI prostoru. FOTO: Damjan Žibert

V globokem učenju ni treba razlagati, kaj so oči, koliko so oddaljene, kaj so ušesa ali kaj podobnega, saj bo računalnik iskal posebnosti v sosledju pikslov in iskal ponovitve. Programer bo naredil številne nevronske mreže, ki bodo iskale posamezne lastnosti obraza. Prva mreža bo iskala odgovor na vprašanje, ali je na fotografiji moški ali ženska, odgovore bo programiral in usmeril sam programer. Druga bo iskala barvo las, tretja bo iskala velikost nosu itd. Teh mrež bo ogromno in ko bodo vse "izpolnjene", bo program začel povezovati rešitve v posamezni mreži, da bo dobil končno rešitev. In seveda, da bo najlažje dobro ločil med spoloma, potrebuje čim več podatkov.

Torej je popolno prepoznavanje obrazov vse večja verjetnost?

Da in ne. Takšen program mora imeti ogromno teh nevronskih mrež in ogromno, res ogromno, podatkov, da bi bil res tako zelo uspešen. Poglejmo tako: imate 100 sadežev in program ste napisali tako, da bo uspel prepoznati pomaranče in jabolka, jih razdeliti v dve množici in se pri tem ne sme zmotiti. Sliši se enostavno in tudi je. Kaj pa če dodate mandarine? Manjše in večje pomaranče? Banane, jagode, jabolka, borovnice, robide in še številne druge sadeže. Program z vsakim novim sadežem dobi novo neznanko in novo skupino podatkov, ki jih mora prepoznati ali pa se vsaj "prepričati", da niso pomaranče. Zdaj pa to spravite na sedem milijard ljudi, na stotine milijard njihovih fotografij, ob različni osvetlitvi, času, kotu in boste lahko počasi razumeli, kako težko je to narediti. Ni nemogoče, je pa težko.

Program se ne uči stavkov, saj ne razume, kaj stavki pomenijo, ampak abecedo in vrstni red črk v besedi in program naredi neke vrste svoj jezik, ki je pravzaprav neverjeten.

Da lahko ločite sadeže, jih morate ločiti po velikosti, barvi, obliki in recimo teksturi. A dejansko jih boste samo spravili v množice – tukaj je 12 pomaranč, tam pa devet banan. Če bi želeli identificirati vsakega človeka na svetu, morate imeti toliko spremenljivk, da bo od sedem milijard ljudi program prepričan, da je identificiral vas in ne nekoga drugega ali pa dve osebi, ki sta si podobni (problemi dvojčkov so zgodba zase). Na Kitajskem imajo več kot 1,3 milijarde ljudi in oni bi morali, če bi želeli biti uspešni, identificirati vsakega od njih in jih nato povezati z imeni in priimki. Da bi bili uspešni, bi potrebovali nekaj fotografij vsake osebe oziroma čim več, ena sama fotografija ne bi zagotovila uspeha.

Recimo, da iščete terorista: letališče v Frankfurtu vsako leto prečka nekaj milijonov ljudi, po 10.000 na dan, a potencialen terorist prečka to letališče samo enkrat ali dvakrat na leto. Zdaj si predstavljajte, da pridem jaz k vam in vam rečem, da imam program, ki je 99,99 % učinkovit pri prepoznavanju ljudi, terorist pride dvakrat na leto, število ljudi, ki prečka pa je 100 milijonov na leto. Imamo problem, a ne? No, zato je zelo pomembno, da tako programerji kot kupci razumejo, da moramo uporabljati lažne pozitivne rezultate. Bolje je napačno označiti 100 ljudi, da so potencialni teroristi, da se nam ta eden ne izmuzne, kot pa da rečemo, da sem 99,99-odstotno prepričan, da ta pravi terorist NI terorist. Zato so zelo pomembni človeški faktor in človeški prsti pri razumevanju in branju teh podatkov. Brez tega ne bo šlo.

Kaj pa računalniki, ki bodo znali razmišljati sami?

Mislite računalnike, ki se bodo samo zavedali, računalnike, ki bodo razmišljali? To se v našem življenju ne bo zgodilo. Težko si predstavljate, kakšna programska težava je to, res. Omejitve naših računalnikov so precej velike. Mi danes znamo narediti sisteme, ki se lahko na podlagi zunanjih dejavnikov sami prilagajajo – recimo vaš telefon in stolpi, na katere se povezujejo. Ta prehod med stolpi je neverjetno miren, poteka hitro, sistem zaznava, da vaš signal pada in pravi čas preklopi, vi sploh ne boste opazili tega. Signal je zelo šibek in je skoraj čudež, da to dela tako dobro. Tudi vaš senzor za peč se bo prilagajal na temperaturo, saj bo peč aktiviral, ko temperatura pade in obratno. A ti sistemi so zelo omejeni, delujejo na podlagi programskega okolja in variacij, ki smo jih vnesli. Čas, ko bo računalnik ali program identificiral novo spremenljivko, jo pravilno umestil, na novo klasificiral in sprejel odločitev, kako v novem primeru reagirati, je še zelo daleč. Nismo niti blizu in ne bomo še zelo zelo dolgo časa, saj nimamo dovolj računalniško programskih struktur, ki bi omogočale takšno prilagodljivost.   

Umetna inteligenca je zelo napredovala v zadnjih desetih letih. Če se spomnim leta 2011, so bili programi strojnega učenja zelo drugačni od programov, ki jih pišemo danes, ravno zaradi rasti globokega učenja in uporabe nevronskih omrežij.
Umetna inteligenca je zelo napredovala v zadnjih desetih letih. Če se spomnim leta 2011, so bili programi strojnega učenja zelo drugačni od programov, ki jih pišemo danes, ravno zaradi rasti globokega učenja in uporabe nevronskih omrežij. FOTO: Damjan Žibert
UI Vsebina ustvarjena brez generativne umetne inteligence.

KOMENTARJI (37)

Opozorilo: 297. členu Kazenskega zakonika je posameznik kazensko odgovoren za javno spodbujanje sovraštva, nasilja ali nestrpnosti.

User1538643
10. 09. 2019 10.01
Kaj g. Joe Dumoulin v bistvu, v Sloveniji počne?
TheEarthIsFlat
09. 09. 2019 19.52
+1
Kako računalniki sestavljajo članke je nam komentatorjem na 24ur zelo jasno, in še bolj nam je jasna njihova "cenzura",
Klotilda H
08. 09. 2019 18.04
+4
SLOVENŠČINA JE MED NAJVEČJIMI SVETOVNIMI JEZIKI: z dvema milijonoma je na okoli 140. mestu med okoli 6000 jeziki, kolikor jih je na planetu zemlja.
terantul
08. 09. 2019 17.54
-2
Uporabnik113189
08. 09. 2019 15.42
+8
Naslov, s pomočjo umetne inteligence računalniki razumejo in sestavljajo besedila v slovenščini. Khmm, RAZUMEJO? Sem gledal posvet naših strokovnjakov o pravni državi in vladavini prava. Bi imel marsikaj za dodati, sicer pa so kar sami precej nazorno ugotovili, da večina običajnih državljanov sploh ne razume osnovnih pojmov. Še manj natančnega opisa pravne države, kaj jo določa itd. Vladavina prava je pač zopet nekaj povsem drugega, potem pa imamo še vsaj dva pristopa, anglosaški in nemški, da je zgodba še bolj zapletena. Skratka večina je v tem smislu nepismena, razen redkih izjem ne razume pomena besed, zanimivo tudi med pravno stroko samo. Da komentar pripeljem k bistvu, torej človek ki naj bi bil učitelj te umetne inteligence prevajanja jezikov in prepoznave slik, hkrati še sam ne razume ne vsebine jezika, ne pomena samih besed. Kakršen učitelj, takšen učenec, jutrišnji porazen rezultat je že znan. Posebej "pestro" postane, ko gremo na prodročje psihe, kjer je znano da psihopat ni sposoben čustev, ki naj bi jih opisal z besedami, torej je vsa njegova komunikacija samo sad umetne inteligence", učenja nečesa, kar sam sploh ne razume in verjetno nikoli ne bo. Tudi računalniki ne bodo nikoli v resnici sposobni občutiti pojmov, ki naj bi jih opisovale besede, pa naj bodo algoritmi še tako natančni, prilagojeni, izjemne perfektne kopije, šlo bo skratka za psihopatsko tehnologijo nesposobno dojeti realni svet. Ali po domače izdelujemo stroj, ki bo človeku brez slabe vesti storil tragedijo in se tega ne bo niti zavedal. Vse te dosežke programerjev strojev ( računalnikov) je torej potrebno jemati z veliko rezerve in uvesti močan nadzor nad aplikacijo v vsakodnevno življenje ( kar danes žal ni praksa), zaradi velikanskih dobičkov se nič hudega slutečim ljudem ( celo otrokom) prodaja nevarna tehnologija, ki jo s pridom izkoriščajo izključno oblastniki in mogočniki s kapitalom za zbiranje množice osebnih podatkov. Primerjava z uporabo izuma razbijanja atoma v zlobne namene za množično uničevanje človeštva ali za miroljubno uporabo proizvodnje električne energije je na mestu. Žal te zavesti še ni..
flojdi
08. 09. 2019 15.39
+2
.lepo./ upam, da bo boljše./ ker če si dam prevest kak članek , skoraj krepnem od smeha.( zato raje preberem v angleščini.
anakondabox
08. 09. 2019 14.34
+6
Znova 'fake news'. Striček Google sicer dobro prevaja, a ti prevodi so brez repa in glave; zgoščeno besedišče, ki nima rdeče niti. Prevajajo se posamezne besede, ki nimajo logičnega sosledja. Vem, kako sem se mučila s prevodom svoje NWP v angleščino za Nobelovo nagrado. Vidne strukture (rektor, akademiki) jo pa skrivajo kot 'kača noge'. #sramotaSlovenije
Malinha
08. 09. 2019 14.57
+3
Google je akademsko izobražen, nekje je izpisal prevod "deževni dež". Ali je pa poet. Deževni dež dežuje cel deževni dež dan noter noč deževni dež dežuje noč dan deževno. Uf. Cela poplava. Vesoljni potop.
Sputnik
08. 09. 2019 11.11
+0
meni se pa to zdi bolj kot novo sredstvo s katerim bodo priseljenci po svoje prevajali v slovenščino mi se bomo pa morali z njimi ukvarjat ker se v 50 letih bivanja v sloveniji eni ne naučijo niti dober dan ampak je vedno dobAr. in to ni dobro
Zentrum
08. 09. 2019 11.07
+10
"Zato so prevodi na Google prevajalniku vse boljši" Prosim vas lepo, Google prevodi so še vedno slabši kot če bi jih zaupal nekemu popolnemu laiku. Pa ne samo v slovenščini, tudi v drugih jezikih so katastrofa.
roxerc
08. 09. 2019 15.40
+5
Prevod iz slovenščine v angleščino je, dokler ne gre za strokovni jezik, soliden. Seveda mora oseba, ki uporablja prevajalnik, obvladati jezik, zato da najde neadekvatnosti, nesmisle, lapsuse ali pa dobesedne prevode, ki ne sovpadajo s kontekstom besedila. Če oseba te napake prepozna, je google prevajalnik priročna bližnjica za prevajanje. :)
Zentrum
08. 09. 2019 18.30
Torej ni nič več kot nek digitalni slovar.
RamzesII
08. 09. 2019 10.59
+6
"Bolje je napačno označiti 100 ljudi, da so potencialni teroristi, da se nam ta eden ne izmuzne" Ja, res pametno, in teh 100 bo zabeleženo v neko bazo kot potencialni teroristi, s tem žigom primorani živeti vse življenje in vedno bodo imeli težave zaradi tega. Kolateralna škoda temu rečejo oni. Zakaj mislite, da so straši, katerih otroci so bili žrtve nehumanih kontrol na mejah ZDA, ker so bila 'njihova' imena na seznamu potencialnih teroristov, spremenili imena svojim otrokom. Ker so vedeli kakšne so in bodo posledice. Ne dvomim da to počno tudi odrasli, sicer nimajo več mirnega življenja. Druge možnosti namreč ni, da si zagotoviš mir, vsaj večinoma.
Malinha
08. 09. 2019 12.20
+1
"Bolje je napačno označiti 100 ljudi, da so potencialni teroristi, da se nam ta eden ne izmuzne". Zelo pameten idiotizem. Načelo kazenskega prava je pa absolutno obratno: bolje 10 krivih na prostosti, kakor en sam nedolžen v zaporu. "Recimo, da iščete terorista: ...", je še en tak apriorno sprogramiran diskurz protiterorizma, ki sam ne ve, da je on sam diskurzivno (programsko) terorističen. Spoštovani gospod omenja tudi nevronske mreže. Zanimivo. Zanima me, kako bo celoten program obravnaval zrcalne nevrone, katere so znanstveniki odkrili v človeških možganih, katerih naloga je zgolj zrcaljenje. Skratka, eno je živ organizem človeških možganov, drugo pa program, "ki naj bi mislil". Lahko bi citiral Marxa: "Ne, da je za razumevanje človeških možganov potrebno najprej razumeti opičje možgane, ampak je za opičje možgane potrebno najprej razumeti človeške možgane."
RamzesII
08. 09. 2019 14.57
+0
"Načelo kazenskega prava je pa absolutno obratno: bolje 10 krivih na prostosti, kakor en sam nedolžen v zaporu." No ja, eno je teorija, drugo pa praksa, isto velja za načelo, da si nedolžen dokler ti krivde ne dokažejo, a v praksi navadno ni tako, prej obratno, kriv si dokler ne dokažeš nedolžnosti.
RamzesII
08. 09. 2019 10.51
-3
"Zato so prevodi na Google prevajalniku vse boljši?" Vse boljši, ne pa povsem, še dela lapsuse, zato brez lastnega mozganja ne gre.
RamzesII
08. 09. 2019 10.54
+2
Dvojina mu ne gre najbolje, bolje mu gre množina, gospod Slovenec se tega ni dotaknil.
RamzesII
08. 09. 2019 10.49
+0
Kakšen primer ne bo škodil, da ne bo ostalo samo pri besedah.
RamzesII
08. 09. 2019 11.00
+1
Mislim na razumevanje, sestavljanje in prevajanje besedil.
AlternativeFacts
08. 09. 2019 10.13
-3
proofreader
08. 09. 2019 10.00
+17
Za začetek avtomatizirajmo javni sektor, potem lahko znižamo davke in povišamo plače.
proofreader
08. 09. 2019 09.53
+10
Pri nas še odločb za štipendije nismo sposobni obdelati v enem letu, kar bi povprečen računalnik obdelal čez noč.
anze89
08. 09. 2019 21.18
Sklepam, da si frustriran, ker si kot dijak/študent vložil, pa nisi dobil odločbe? Ja, res je, javni sektor je kriv. Vendarle so še bolj krive mase ljudi, ki so neupravičeno na socialni podpori in zaustavljajo sistem. Moj osebni predlog je, da birokrate razbremenijo pri pisanju odločb in odločanju (odloča se naj le o posebnih primerih). Naj raje delajo na tem, da preprečijo zlorabo socialnih transferjev! Nebroj primerov zdravih fantov in deklet, ki prejemajo podporo zato, da lahko kadijo travo ipd.
proofreader
08. 09. 2019 09.52
+9
Kaj ti pomaga umetna inteligenca in prepoznavanje obrazov storilcev, če potem sodniki storilca oprostijo ali mu dajo pogojno kazen, nekaterim celo vikend zapor.
User1538643
08. 09. 2019 09.34
+1
Tudi mi smo mali neurončki v neuronskih mrežah. Kdo je šef?
User1538643
08. 09. 2019 09.50
-4
Zakaj je prihodnost že določena? Ker je cilj znan. Vmes je pa le ena pot, ostale se končajo slepo.
User1538643
08. 09. 2019 09.24
+2
"Čas, ko bo računalnik ali program identificiral novo spremenljivko, jo pravilno umestil, na novo klasificiral in sprejel odločitev, kako v novem primeru reagirati, je še zelo daleč. Nismo niti blizu in ne bomo še zelo zelo dolgo časa, saj nimamo dovolj računalniško programskih struktur, ki bi omogočale takšno prilagodljivost." Takšno prilagodljivost bodo omogočali, oziroma, na začetni osnovi že omogočajo kvantni računalniki, a nujno hitrost povezljivosti 5G in prihodnje. Smo na prelomnici.
User1538643
08. 09. 2019 08.42
+5
Torej, zaradi učenja, ki je proces in ima nedokončane in odvečne, da ne rečem napačne veje, in nikoli ni dokončni zaključen izdelek povsem določenih in znanih, vendar omejenih zmožnostih, mi delamo napake. Sklepam, da bo tudi UI pri svojih nalogah, kot je recimo tudi vožnja, tako kot človek, vedno delala napake. Tukaj je tudi odgovor, zakaj delamo napake, od najmanjših motoričnih in miselnih, pa do največjih v korporativnem pomenu.
smaug01
08. 09. 2019 08.28
+16
Precej nesmiselnih stavkov je zapisanih. Ni jasno, ali se intervuvanec slabo izraža, ali pa avtor članka odgovore nerodno prevaja. Je pa res, da gre za temo, ki jo nestrokovnjak ne more zares razumeti. Ko pa strojno učenje končno demistificira, ugotovi, da gre bolj ali manj za sklop nekoliko zahtevnejših statističnih metod.
Gratitude
08. 09. 2019 08.58
+6
Avtor članka ne obvlada tematike, verjetno za FFT sploh ni slišal...
anze89
08. 09. 2019 21.21
+1
Statističnih metod, optimizacijskih problemov ter v mnogih primerih le nekaj "pametnega ugibanja" :)